[¹ÌÀûºÐ] 236_±¸ºÐ±¸Àû¹ý3D z=f(x,y) ºÎÇÇ
ÀÛ¼ºÀÚ
:
ÀÌÀåÈÆ
ÀÛ¼ºÀÏ
:
2014-07-06
Á¶È¸
: 12,110
÷ºÎÆÄÀÏ
:
236.cdf (48.2K)
DATE : 2017-10-15 11:20:39
PC¿¡¼
Wolfram CDF Player
¼³Ä¡ ÈÄ, CDF ÷ºÎÆÄÀÏÀ» ¿¸é, ´ÙÀ̳ª¹ÍÇÑ ½ÇÇè°ú °üÂûÀÌ °¡´ÉÇÕ´Ï´Ù.
ÀÌÀåÈÆ
(14-07-06 18:03)
°ø°£ÁÂÇ¥»óÀÇ ±×·¡ÇÁ·Î ³ªÅ¸³»¾îÁö´Â À̺¯¼öÇÔ¼ö z=f(x,y)°¡ xyÆò¸é°ú µÑ·¯½ÎÀÎ ¿µ¿ªÀÇ ºÎÇÇ´Â ÀÌÁßÀûºÐÀ¸·Î ±× Âü°ªÀ» ±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿©±â¼´Â ±¸ºÐ±¸Àû¹ýÀÇ ¹æ¹ýÀ¸·Î ±Ù»çºÎÇÇÀÇ ¼ö·Å°úÁ¤À» °üÂûÇÏ¿© º¾´Ï´Ù. ´Ü, ±¸ºÐ±¸Àû¹ý ±¸Çö¿¡ ÀÖ¾î¼ Á¤ÀÇ¿ªÀ» nµîºÐÇϸé, ½ÇÁ¦·Î x, yÃà °¢°¢¿¡ ´ëÇÏ¿© nµîºÐ µÇ´Â °ÍÀ¸·Î ½ÇÁ¦·Î´Â ºÐÇÒ¼ö°¡ n©÷ÀÌ µË´Ï´Ù. µû¶ó¼ ±×¸¸ÅÀÇ Á÷À°¸éü¸¦ Ãâ·ÂÇØ¾ß Çϱ⿡ Graphic¿¡ ¸¹Àº ¹«¸®¸¦ ÁÝ´Ï´Ù. ´õ¿íÀÌ, Á÷À°¸éüÀÇ ³ôÀ̸¦ °è»êÀº ºÐÇÒµÈ °¢ ±¸°£¿¡ ´ëÇÏ¿© z=f(x,y)ÀÇ ÃÖ´ë, ÃÖ¼Ò°ªÀ» NMaximize ȤÀº NMinimize·Î °è»êÇØ ³»¾ßÇϴµ¥ ÀÌ ¿ª½Ã ÀüÁ¦ ºÐÇÒ¼ö n©÷ ¸¸ÅÀ» °è»êÇϴµ¥ CPU¿¡ ¸¹Àº ¹«¸®¸¦ ÁÙ ¼ö ¹Û¿¡ ¾ø½À´Ï´Ù. ±×·¯¹Ç·Î °ªÀÇ º¯°æ¿¡ µû¸¥ 󸮽ð£(±×·¡ÇÁ Ãâ·Â ¹× °è»ê °á°ú)ÀÌ ´Ù¼Ò ¿À·¡°É¸³´Ï´Ù. (¾à 30ÃÊ ³»¿Ü) Âü°íÇϽñ⠹ٶø´Ï´Ù.
°ø°£ÁÂÇ¥»óÀÇ ±×·¡ÇÁ·Î ³ªÅ¸³»¾îÁö´Â À̺¯¼öÇÔ¼ö z=f(x,y)°¡ xyÆò¸é°ú µÑ·¯½ÎÀÎ ¿µ¿ªÀÇ ºÎÇÇ´Â ÀÌÁßÀûºÐÀ¸·Î ±× Âü°ªÀ» ±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿©±â¼´Â ±¸ºÐ±¸Àû¹ýÀÇ ¹æ¹ýÀ¸·Î ±Ù»çºÎÇÇÀÇ ¼ö·Å°úÁ¤À» °üÂûÇÏ¿© º¾´Ï´Ù. ´Ü, ±¸ºÐ±¸Àû¹ý ±¸Çö¿¡ ÀÖ¾î¼ Á¤ÀÇ¿ªÀ» nµîºÐÇϸé, ½ÇÁ¦·Î x, yÃà °¢°¢¿¡ ´ëÇÏ¿© nµîºÐ µÇ´Â °ÍÀ¸·Î ½ÇÁ¦·Î´Â ºÐÇÒ¼ö°¡ n©÷ÀÌ µË´Ï´Ù. µû¶ó¼ ±×¸¸ÅÀÇ Á÷À°¸éü¸¦ Ãâ·ÂÇØ¾ß Çϱ⿡ Graphic¿¡ ¸¹Àº ¹«¸®¸¦ ÁÝ´Ï´Ù. ´õ¿íÀÌ, Á÷À°¸éüÀÇ ³ôÀ̸¦ °è»êÀº ºÐÇÒµÈ °¢ ±¸°£¿¡ ´ëÇÏ¿© z=f(x,y)ÀÇ ÃÖ´ë, ÃÖ¼Ò°ªÀ» NMaximize ȤÀº NMinimize·Î °è»êÇØ ³»¾ßÇϴµ¥ ÀÌ ¿ª½Ã ÀüÁ¦ ºÐÇÒ¼ö n©÷ ¸¸ÅÀ» °è»êÇϴµ¥ CPU¿¡ ¸¹Àº ¹«¸®¸¦ ÁÙ ¼ö ¹Û¿¡ ¾ø½À´Ï´Ù. ±×·¯¹Ç·Î °ªÀÇ º¯°æ¿¡ µû¸¥ 󸮽ð£(±×·¡ÇÁ Ãâ·Â ¹× °è»ê °á°ú)ÀÌ ´Ù¼Ò ¿À·¡°É¸³´Ï´Ù. (¾à 30ÃÊ ³»¿Ü) Âü°íÇϽñ⠹ٶø´Ï´Ù.
ÀÌÀåÈÆ
(16-01-21 09:31)
Updated Wolfram CDF Player 10.3.
Updated Wolfram CDF Player 10.3.
ÀÌÀåÈÆ
(17-05-25 14:17)
Updated by Wolfram Mathematica 11.1 & Optimized Wolfram CDF Player 11.1.
Updated by Wolfram Mathematica 11.1 & Optimized Wolfram CDF Player 11.1.
Copyright ©Ï ¼öÇлý°¢(MATHOUGHT.COM) Since 2000 ÆÄÁÖ±¤ÀÏÁßÇб³ & ÆÄÁÖ¿©ÀÚ°íµîÇб³ ¼öÇаú ÀÌÀåÈÆ ¢Î 031) 940-1935